
1 



2 



3 

Just Cause 2 is a very big game. Not necessarily the biggest of all times, but certainly one of 

the bigger titles out there. Size is not necessarily an easy metric to compare either, considering 

that a space game would by default beat pretty much everything else. It is more of a scale vs. 

density ratio, and whether your content is artist created or procedural. Our content is almost 

entirely artist created. This talk is not about comparing though, but addressing the issues you 

may run into when creating very large game worlds. 



4 

There are also game-play considerations, but we will not focus on that. 



5 

This screenshot illustrates a few of the things we did to give the world more life. The distant 

lights system highlights all the locations in the world in a very natural way and makes the world 

look much more realistic. But most important of all, the world looks inhabited. It also helps the 

player find interesting points to go to and recognize areas of interest. The effect is of course 

more pronounced at night, but we have it enabled during day-time also. 

 

The other interesting point here is our landmark system. For performance and memory 

reasons we can never have the whole world loaded, so only the relatively close locations are in 

memory. But for key landmarks and locations we have simple landmark models resident at all 

times. For instance, over the right shoulder of Rico in this image you see the twin tower casino 

from the second agency mission. The location is many miles away and certainly not loaded at 

this distance. 



6 

World simulation ï Makes sure that there is always something going on. It could be AI planes 

flying over your head, civilians, birds, butterflies, scorpions etc. 

Dynamic weather system ï It could start to rain or snow at any time, even thunder. Also sets 

the right mood for some certain missions. 

Day-night cycle ï Adds diverse lighting conditions and makes the world feel more dynamic and 

living. 

There are plenty of different zone that give the world a more diverse appearance and makes it 

more interesting. It also gives the player another reason to explore different areas. 

We spent a lot of time making verticality work, because in this game you will spend plenty of 

time up in the air, whether in a helicopter or plane or simply slingshotting around with the 

grappling hook and parachute. 



7 

At compile time we assemble all the static light sources into a compact vertex buffer. We do 

some simple splitting of it into a grid for basic frustum culling and better accuracy for the 

packed vertex positions. The whole thing is rendered as simple colored point-sprites and is 

very cheap, about 0.1-0.2ms on the consoles on a typical frame, and has a huge visual impact. 

It was really a wow-moment when it first entered the build. 



8 

Another screenshot illustrating the impact of the distant lights and landmark system. The city 

really looks like a living city at many miles away, and with the city actually not being loaded into 

memory at all. The landmarks of the skyscrapers gives the city its spatial profile and the light 

sources give it its lighting profile and makes it seem alive. The keen eyed viewer may notice 

that bridges are missing, they are not loaded at this distance, but you still get an impression of 

them being there due to the long lines of regularly spaced light sources there. 



9 

The bug in the code is that if you pass depth = 1.0f, the depth bits in fixed_zs will be 0, rather 

than the expected 0xFFFFFF. The reason for this is a combination of lack of precision and 

IEEE-754 rounding rules. In the upper half of the range here, i.e. from 8M to 16M, a floating 

point value has integer resolution. So there is no 16777215.5f value, only 16777215.0f and 

16777216.0f. What happens when 0.5f is added to 16777215.0f is that the result is rounded to 

the closest infinitely precise value, and in cases where there is a tie, such as is happening 

here, it rounds to the closest even. This may seem weird, but is to avoid a rounding bias. What 

happens thus in our case is that we end up with 16777216.0f, or 0x1000000, which after the 

shift loses its left-most 1 and only zeros remain. This is just one example of where the 

abstraction of real numbers becomes leaky. It is of great importance to be aware of the 

underlying representation and its limitations and quirks. 

 

The most basic insight about floats is that they have a close to logarithmic distribution of 

values. The greater the magnitude, the lower the resolution. For monotonically increasing 

values, something could work initially, only to fail after enough time has passed. For instance, 

animation gets jerky after some amount of time. Among other things, this happened for our 

water animation. The solution was to reset the timer as soon as no water patch was visible, 

and otherwise we also reset it after a few hours straight. This happened occasionally if 

someone left the office with the game running. The next day the water animation was 

extremely jerky. 

 

Whenever it made sense, we switched to a fixed point timer, which does not suffer from this 

problem. 



10 

For us the worst precision on world coordinates was in the 8k to 16k range. On 75% of the 

map, either x or z coordinate will be in this range, so itôs essentially a universal problem. Floats 

have a millimeter resolution at this range, so it is actually OK if it was only used as a final 

stored value, but we also need to do math, doing transforms and all, resulting in accumulated 

error in every operation. So millimeters can turn into centimeters or even decimeters 

depending on how much math you do, and most importantly, how you do it. 

 

All basic floating point operations introduce up to 0.5 ULP error for every operation. This is 

problematic in itself; however, by far the biggest offender is adding or subtracting numbers of 

very different magnitude. If a big and small number is added together the resulting float may 

not have enough resolution to properly represent the small numberôs contribution. Adding a 

number of much greater magnitude to a number, and then subtracting another big number 

from it, is a quick way to destroy any sort of precision the original value might have had. 

 



11 

For the sake of the discussion here, letôs assume the shader also needs the world_pos value, 

not just the output position. 

 

First method is what we used early in development of Just Cause 2. It was very lossy because 

we deal with large world_pos values compared to the relatively small values in the input vertex 

position. 

 

We switched to the second method which does not go through a world position, but transforms 

directly from input position to output. Note though that you canôt just take the W, V and P 

matrices and slap them together, because you will run into similar floating point issues while 

computing this matrix. You need to decompose the matrices into their subcomponents and 

merge the translations from world and view matrices to take away the big translations. 

 

The second method has the downside of requiring two per-instance matrices, resulting in more 

vertex shader constants to be set. In the first method the ViewProj matrix can be constant for 

the whole frame. Lately we have poked around with the third method. By centering the view-

proj matrix around the camera we can keep a local view-proj matrix for the whole frame, and 

since weôre working in local space we donôt have any big translations. It will not be quite as 

precise as method two since weôre chaining transforms again, but it is good enough in practice 

for us. 

 



12 

You often need to use inverse matrices. Inverting a matrix is often a quite lossy process. It is 

much more accurate to compute the inverse matrix directly from the same parameters that 

was used to generate the original matrix. It is usually way faster too. 


