
1 



2 



3 



4 



5 

ALU and TEX has increased way more than Bandwidth and ROP over the last decade. Modern 

GPUs have an ALU / ROP ratio 10x larger than a decade ago. 

There are very few possible optimization opportunities when you are ROP bound. Simply 

drawing fewer pixels is generally the only way to go. Another strategy is to make fancier 

shaders to shift the balance towards the ALU/TEX. However, that might make it prettier more 

or less for free, but it wonôt make it go faster. 



6 

There are a number of typically ROP bound cases in real games today. They generally consist 

of a simple shader, usually little more than just a texture. 

There are some tricks that have been employed to various success before, such as rendering 

to a low-res render target and upscale, which essentially reduces the number of pixels. This 

may work for low-frequency data, such as a typical particle system. Another approach is to 

abuse MSAA to improve rasterize throughput. This may not work out if you are already using 

MSAA for antialiasing. 

The solution presented here is to reduce the number of pixels by eliminating waste. This 

technique can generally be combined with the other two approaches. 



7 

A typical particle texture has plenty of area where alpha is zero. Rendering those pixels will be 

a waste of fillrate as it contributes nothing to the final frame. 

Instead of simply drawing a plain quad, a better approach is to use irregular polygons that 

tightly encloses the òmeatò of the particle. We made a tool that automatically finds an optimal 

enclosing polygon for a given texture. 



8 

The more vertices you use, the bigger the fillrate saving will be, but there is a diminishing 

return. Going further than about 8 vertices is usually not really worth it. Even staying with four 

vertices can provide a substantial performance improvement. 

Particles will have to be very small for a smaller vertex count to really pay off from a GPU 

performance point of view. Youôll rarely be bound by the vertex shader. However, if the 

particles are generated on the CPU, computing more vertices may be costly. For this reason 

we stuck with 4 vertices for the clouds in Just Cause 2. However, the particle effects were 

drawn with GPU generated vertices, so we went all the way to 8 there. 



9 

Before making the tool we tried manual trimming with a rudimentary in-game tweaking system 

temporarily added to the debug-menu. This was done on the clouds texture atlas. It worked, 

but was tedious. The large performance benefit motivated expanding this to general particle 

effects. However, the manual approach did not scale. Instead of a single atlas with 16 tiles we 

had dozens of textures, some with 64 animation frames. It would be weeks or months of works 

to do them all manually. 

We came up with a tool that given a texture, an alpha threshold, and a target vertex count 

computed an optimized enclosing polygon. This tool is open-source and available online [3]. 

We have continued to develop it internally though and integrated it into our pipeline. However, 

the open-source version is a good start for integrating this technique into your tool chain. 



10 

Adding pixels to the convex hull can be quite slow if we are adding every solid pixel. So 

whenever a pixel is deemed to not be a potential corner pixel, e.g. it is surrounded by other 

solid pixel and thus completely within solid space, then we simply skip it. This made the 

construction of the convex hull substantially faster. 

The convex hull is typically a fair bit larger than the target vertex count, anything from a few 

dozen up to hundreds of vertices. To find the most optimal polygon we loop through all 

permutation of edges in the hull and select the one that results in the smallest area. This is a 

brute-force approach, so it is important to reduce the search space prior to this selection 

phase. So we remove vertices from the convex hull, one-by-one, by finding the edge that 

grows the convex hull the least when removed. 



11 



12 



13 



14 


