
1

2

This topic has grown on me over the years as I have
seen shader code on slides at conferences, by
brilliant people, where the code could have been
written in a much better way. Occasionally I hear an
“this is unoptimized” or “educational example”
attached to it, but most of the time this excuse doesn't
hold. I sometimes sense that the author may use
“unoptimized” or “educational” as an excuse because
they are unsure how to make it right. And then again,
code that's shipping in SDK samples from IHVs aren't
always doing it right either.

When the best of the best aren't doing it right, then
we have a problem as an industry.

3

4

(x – 0.3) * 2.5 = x * 2.5 + (-0.75)

5

Assembly languages are dead. The last time I used
one was 2003. Since then it has been HLSL and
GLSL for everything. I haven't looked back.

So shading has of course evolved, and it is a natural
development that we are seeing higher level
abstractions as we're moving along. Nothing wrong
with that. But as the gap between the hardware and
the abstractions we are working with widens, there is
an increasing risk of losing touch with the hardware. If
we only ever see the HLSL code, but never see what
the GPU runs, this will become a problem. The
message in this presentation is that maintaining a
low-level mindset while working in a high-level
shading language is crucial for writing high
performance shaders.

6

This is a clear illustration of why we should bother
with low-level thinking. With no other change than
moving things around a little and adding some
parentheses we achieved a substantially faster
shader. This is enabled by having an understanding
of the underlying HW and mapping of HLSL
constructs to it.

The HW used in this presentation is a Radeon HD
4870 (selected because it features the most readable
disassembly), but most of everything in this slide
deck is really general and applies to any GPU unless
stated otherwise.

7

Hardware comes in many configurations that are
balanced differently between sub-units. Even if you
are not observing any performance increase on your
particular GPU, chances are there is another
configuration on the market where it makes a
difference.

Reducing utilization of ALU from say 50% to 25%
while bound by something else (TEX/BW/etc.)
probably doesn't improve performance, but lets the
GPU run cooler. Alternatively, with today's fancy
power-budget based clocks could let the hardware
maintain a higher clock-rate than it could otherwise,
and thereby still run faster.

8

9

Compilers only understand the semantics of the
operations in the shader. They don't know what you
are trying to accomplish. Many possible optimizations
are “unsafe” and must thus be done by the shader
author.

10

This is the most trivial example of an piece of code
you may think could be optimized automatically to
use a MAD instruction instead of ADD + MUL,
because both constants are compile time literals and
overall very friendly numbers.

11

Turns out fxc is still not comfortable optimizing it.

12

The driver is bound by the semantics of the provided
D3D byte-code. Final code for the GPU is exactly
what was written in the shader.

You will see the same results on PS3 too, except in
this particular case it seems comfortable turning it into
a MAD. Probably because the constant 1.0f there.
Any other constant and it behaves just like PC here.

The Xbox360 shader compiler is a funny story. It just
doesn't care. It does this optimization anyway,
always, even when it obviously breaks stuff. It will
slap things together even if the resulting constant
overflows to infinity, or underflows to become zero.
1.#INF is your constant and off we go! Oh, zero, I
only need to do a MUL then, yay! There are of course
many more subtle breakages because of this, where
you simply lost a whole lot of floating point precision
due to the change and it's not obvious why.

13

We are dealing with IEEE floats here. Changing the
order of operations is NOT safe. In the best case we
get the same result. We might even gain precision if
order is changed. But it could also get worse,
depending on the values in question. Worst case it
breaks completely because of overflow or underflow,
or you might even get a NaN where the unoptimized
code works.

Consider x = 0.2f in this case:

sqrt(0.1f * (0.2f - x)) returns exactly zero

sqrt(0.02f - 0.1f * x) returns NaN

The reason this breaks is because the expression in
the second case returns a slightly negative value
under the square-root. Keep in mind that neither of
0.1f, 0.2f or 0.02f can be represented exactly as an
IEEE float. The deviation comes from having properly
rounded constants. It's impossible for the compiler to
predict these kinds of failures with unknown inputs.

14

Relying on the shader compiler to fix things up for
you is just naïve. It generally doesn't work that way.
What you write is what you get. That's the main
principle to live by.

15

While the D3D compiler allows itself to ignore the
possibility of INF and NaN at compile time (which is
desirable in general for game development), that
doesn't mean the driver is allowed to do so at
runtime. If the D3D byte-code says “multiply by zero”,
that's exactly what the GPU will end up doing.

16

This has been true on all GPUs I have ever worked
with. Doesn't mean there couldn't possibly be an
exception out there, but I have yet to see one.

Some early ATI cards had a pre-adder such that add-
multiply could be a single instruction in specific
cases. There were some restrictions though, like no
swizzles and possibly others. It was intended for fast
lerps IIRC. But even so, if you did multiply-add
instead of add-multiply you freed up the pre-adder for
other stuff, so the recommendation still holds.

17

Any sort of remapping of one range to another should
normally be a single MAD instruction, possibly with a
clamp, or in the most general case be MAD_SAT +
MAD.

The examples here are color-coded to show what the
slope and offset parts are. Left is the “intuitive”
notation, and right is the optimized.

Example 1: Starting point and slope from there.

Example 2: Mapping start to end into 0-1 range

Example 3: Mapping a range around midpoint to 0-1

Example 4: Fully general remapping of [s0, e0] range
to [s1, e1] range with clamping.

18

More remapping of expressions. All just standard
math, nothing special here.

The last example may surprise you, but that's 3
instructions as written on the left (MUL-MAD-ADD),
and 2 on the right (MAD-MAD). This is because the
semantics of the expression dictates that (a*b+c*d) is
evaluated before the += operator.

19

Given that most hardware implement division as the
reciprocal of the denominator multiplied with the
numerator, expressions with division should be
rewritten to take advantage of MAD to get a free
addition with that multiply. Sadly, this opportunity is
more often overlooked than not.

20

A quick glance at this code may lead you to believe
it's just a plain midpoint-and-range computation, like
in the examples in a previous slide, but it's not. If the
code would be written in MAD-form, this would be
immediately apparent.

However, in the defense of this particular code, the
implementation was at least properly commented with
what it is actually computing. Even so, a seasoned
shader writer should intuitively feel that this
expression would boil down to a single MAD.

21

As we simplify the math all the way it gets apparent
that it's just a plain MAD computation. Once the scale
and offset parameters are found, it's clear that they
don't match the midpoint-and-range case.

22

You want to place abs() such that they happen on
input to an operation rather than on output. If abs() is
on output another operation has follow it for it to
happen. If more stuff happens with the value before it
gets returned, the abs() can be rolled into the next
operation as an input modifier there. However, if no
more operations are done on it, the compiler is forced
to insert a MOV instruction.

23

Same thing with negates.

24

saturate() on the other hand is on output. So you
should avoid calling it directly on any of your inputs
(interpolators, constants, texture fetch results etc.),
but instead try to roll any other math you need to do
on it inside the saturate() call. This is not always
possible, but prefer this whenever it works.

25

Most of the time the HLSL compiler doesn't know the
possible range of values in a variable. However,
results from saturate() and frac() are known to be in
[0,1], and in some cases it can know a variable is
non-negative or non-positive due to the math
(ignoring NaNs). It is also possible to declare unorm
float (range [0, 1]) and snorm float (range [-1, 1])
variables to tell the compiler the expected range.
Considering the shenanigans with saturate(), these
hints may actually de-optimize in many cases.

26

The reason precise works is that it enforces IEEE
strictness for that expression. saturate(x) is defined
as min(max(x, 0.0f), 1.0f). If x is NaN the result
should be 0. This is because min or max with one
parameter as NaN returns the other parameter
according to the IEEE-754-2008 specification. So
max(NaN, 0.0f) = 0.0f. Would this be optimized away
the final result would be 1.0f instead in this case.

This is rare case of precise actually improving
performance rather than reducing it. Naturally, the
preferred way would be for the compiler to treat
saturate() as a first-class citizen rather than as a
sequence of max and min, which would have avoided
this problem in the first place.

27

sqrt() maps to a single instruction on DX10+ HW.
Current-gen consoles do not have it, so it will be
implemented as rcp(rsqrt(x)). Note that implementing
sqrt(x) as x * rsqrt(x) typically is preferable to calling
sqrt(x) on these platforms, whereas on DX10+ GPUs
you should prefer just calling sqrt(x).

28

Conditional assignment is fast on all GPUs since the
dawn of time. There is rarely a good reason to use
sign(), or for that matter step(). A conditional
assignment is not only faster, but is often also more
readable.

Trigonometric functions are OK. There are valid use
cases, but working with angles is often a sign that
you didn't work out the math all the way through.
There could be a more elegant and faster solution
using say a dot-product.

Inverse trigonometric functions are almost
guaranteed a sign that you're doing it wrong.
Degrees? Get out of here!

29

A w value of 1.0f is a very common case. This ought
to be written explicitly in the shader for the benefit of
the shader compiler, rather than relying on implicit
1.0f from the vertex fetch. Unfortunately, it doesn't boil
down to MAD-MAD-MAD by default. With mul()
decomposed and a few parentheses it can be
achieved though. You could roll it into your own mul()-
like function for readability.

30

Note that the number of instruction slots did not
decrease due to a read-port limitation on constants
on the HW. However, we freed up lanes that can be
used for other work. In realistic cases the shader will
end up using fewer instruction slots and run faster as
those freed up lanes will be filled with other work.

31

Here we are converting a screen-space texture
coordinate and depth value into a world-space
coordinate, which is then used for computing a light
vector. These transforms can be merged into the
same matrix. Naturally chained matrix transforms can
also be merged into the same matrix. We have had
real shaders where merging the transforms ended up
more than doubling the performance.

32

All NVIDIA DX10+ GPUs are scalar based.

AMDs GCN architecture (HD 7000 series) is scalar
based. Earlier AMD DX10 and DX11 GPUs are VLIW.

Both AMD and NVIDIA DX9-level GPUs are vector
based. This includes PS3 and Xbox360.

33

normalize(), length(), distance() etc. all contain a dot()
call. The compiler only generates one call if they
match in code mixing these functions, but only for
exact matches. For instance, if you have length(a – b)
in your code, distance(a, b) will reuse the shared sub-
expression, whereas for distance(b, a) it won't.

34

Instead of normalize(), you could roll a normfactor()
function that computes the scalar normalizing factor.
Any other scalar factor that needs to go in there could
then be multiplied into this factor before the final
multiply with the vector.

Double-check with PS3 if you support this platform as
it has a built-in normalize() that could be faster,
depending on lots of factors such as the phase of the
moon and whether you passed any virgin blood on
the command-line.

35

The straightforward way of making a vector be length
50.0f is to normalize it and then multiply by 50.0f,
which unfortunately is also slower than necessary.
This illustrates the benefit of separating the scalar
and vector parts of an expression.

36

Here is another example. The dot-product is shared,
because the sub-expressions match. However, the
compiler doesn't take advantage of the mathematical
relationship between sqrt(x) and rsqrt(x).

37

The most obvious optimization, i.e. removing the
sqrt() call and comparing the length squared instead,
is a bit of a dead-end. We get further by unifying the
expressions instead. Once the expressions are
unified, we can pull out the normalizing factor, and
then simply flatten the if-statement though clamping
the factor to 1.0f. As we don't expect any negative
numbers, this clamp can be replaced with saturate().
Finally, HLSL realizes as much too, so we need to
apply the precise workaround.

38

Unifying expressions basically only removed the
sqrt() call. Which is not bad of course, it even saved a
VLIW instruction slot here. About the same as the
simple optimization of comparing the square length.
The main advantage of this route is that it allows us to
go further with more optimizations. The key point is
that the rsqrt() has to be computed anyway, so we
can take advantage of its existence and design the if-
statement on what is already available.

39

Once we have gone all the way through we have a
really short stub left of the original code. This code is
also easily extended to a more general case,
clamping to any given length, and that only adds a
single scalar multiply, whereas it would have added at
least three in the naïve implementation.

The general case is of course more useful for real
tasks, such as for instance clamping a motion vector
for motion blur to avoid over-blurring some fast
moving objects, something we did in Just Cause 2 for
the main character. The main takeaway here though
is that understanding what happens inside of built-in
functions allows us to write better code, and even
built-ins should be scrutinized for splitting scalar and
vector work.

40

Unfortunately, this optimization opportunity frequently
goes unnoticed, but it is one of the best and most
general applicable optimizations. It benefits all
hardware, and even more so on the most modern
ones. Definitively look out for this one on PC and
next-gen platforms, but even vector based
architectures such as curr-gen consoles typically see
a nice improvement as well. And it's all just about
simple rearrangement of the code that normally
doesn't affect readability at all.

41

This is for VLIW and vector architectures. It doesn't
help scalar based hardware, but it doesn't hurt them
either. They are just not affected.

What we are doing here is basically just breaking up
the dependency chain into a “tree” if you will,
basically allowing more parallelism. The number of
operations doesn't change at all, but the required
instruction slots is reduced, which will result in faster
execution.

42

High-level optimization, i.e. changing the algorithm,
tends to have a greater impact. Nothing new there.
They also tend to be vastly more costly in terms of
time and effort. The ROI of low-level optimizations
tends to be far greater. But this is not an argument for
or against either, because you should do both if you
aspire to have any sort of technical leadership.

The preferable way is of course not to go stomping on
all the shaders in your code base looking for low-level
optimizations. That's fine say at the end of a project,
or when you need to poke around in shader anyway.
What you really should do is design your high-level
algorithm fully aware of the hardware, and have a
low-level thinking as you're writing the shader to
begin with. Don't just check in what happened to work
first, but make sure you've covered at least the most
obvious low-level optimizations before submitting
anything to production.

43

The [branch] tag is one of the best features in HLSL.
If you intend to skip some work for performance
where applicable, always apply the tag to
communicate this to the compiler. Because if the
compiler fails to do it, there will be an error that you
can fix. Otherwise it will silently flatten the branch,
slowing down the shader rather than speeding it up,
and you may not even notice. And while in this state,
chances are that more branch-unfriendly code will be
added that you will have to fix later.

44

For Just Cause 2 we made a shader diff script that
basically showed the changes an edit did to the
number of instructions and registers used by the
shader. Especially when you have something like an
über-shader with many specializations it allowed us
to catch cases where a change had impacts on
versions that were expected to be unaffected. You
could also get a great overview of the impact of
updating a function in a central header file used by
everything and see an instruction or two shaved off
from loads of shaders in the project. We made it a
standard practice to attach the diff to code-reviews
that affected shaders, allowing us to also judge the
performance impact on new features or other
changes, as well as staying on top of general shader
code quality.

45

46

47

Join our team!

